(1.) WASSCE:FM Two linear transformations $P$ and $Q$ in the $xy$ plane are defined as:
$
P:(x, y) \rightarrow (x + 2y, x) \\[3ex]
Q:(x, y) \rightarrow (x + y, -x + 2y) \\[3ex]
$
(a.) Write down the matrices of $P$ and $Q$
(b.) Find $M$ such that $2P + 3Q - MQ = 5I$, where $M$ is a $2 * 2$ matrix and $I$ is a $2 * 2$ identity matrix.
$
(a.) \\[3ex]
Let\;\;matrices \\[3ex]
P =
\begin{bmatrix}
a & b \\[3ex]
c & d
\end{bmatrix} \;\;\;and\;\;\;
Q =
\begin{bmatrix}
e & f \\[3ex]
g & h
\end{bmatrix} \\[3ex]
$
$
\underline{Transformations\;\;to\;\;Matrices} \\[3ex]
\boldsymbol{P} \\[3ex]
\begin{bmatrix}
a & b \\[3ex]
c & d
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\begin{bmatrix}
x + 2y \\[3ex]
x
\end{bmatrix} \\[3ex]
$
$
ax + by = x + 2y \\[3ex]
cx + dy = x \\[3ex]
\implies \\[3ex]
ax + by = 1x + 2y \\[3ex]
cx + dy = 1x + 0y \\[3ex]
\implies \\[3ex]
a = 1 \\[3ex]
b = 2 \\[3ex]
c = 1 \\[3ex]
d = 0 \\[3ex]
P =
\begin{bmatrix}
1 & 2 \\[3ex]
1 & 0
\end{bmatrix} \\[3ex]
$
$
\boldsymbol{Q} \\[3ex]
\begin{bmatrix}
e & f \\[3ex]
g & h
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\begin{bmatrix}
x + y \\[3ex]
-x + 2y
\end{bmatrix} \\[3ex]
$
$
ex + fy = x + y \\[3ex]
gx + hy = -x + 2y \\[3ex]
\implies \\[3ex]
e = 1 \\[3ex]
f = 1 \\[3ex]
g = -1 \\[3ex]
h = 2 \\[3ex]
Q =
\begin{bmatrix}
1 & 1 \\[3ex]
-1 & 2
\end{bmatrix} \\[3ex]
$
$
(b.) \\[3ex]
2P + 3Q - MQ = 5I \\[3ex]
2P \\[3ex]
= 2\begin{bmatrix}
1 & 2 \\[3ex]
1 & 0
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
2(1) & 2(2) \\[3ex]
2(1) & 2(0)
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
2 & 4 \\[3ex]
2 & 0
\end{bmatrix} \\[7ex]
3Q \\[3ex]
= 3\begin{bmatrix}
1 & 1 \\[3ex]
-1 & 2
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
3(1) & 3(1) \\[3ex]
3(-1) & 3(2)
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
3 & 3 \\[3ex]
-3 & 6
\end{bmatrix} \\[7ex]
Let\;\;M =
\begin{bmatrix}
p & v \\[3ex]
m & n
\end{bmatrix} \\[7ex]
MQ \\[3ex]
\begin{bmatrix}
p & v \\[3ex]
m & n
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\[3ex]
-1 & 2
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
p(1) + v(-1) & p(1) + v(2) \\[3ex]
m(1) + n(-1) & m(1) + n(2)
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
p - v & p + 2v \\[3ex]
m - n & m + 2n
\end{bmatrix} \\[7ex]
2P + 3Q - MQ \\[3ex]
= \begin{bmatrix}
2 & 4 \\[3ex]
2 & 0
\end{bmatrix} +
\begin{bmatrix}
3 & 3 \\[3ex]
-3 & 6
\end{bmatrix} -
\begin{bmatrix}
p - v & p + 2v \\[3ex]
m - n & m + 2n
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
2 + 3 - (p - v) & 4 + 3 - (p + 2v) \\[3ex]
2 + -3 - (m - n) & 0 + 6 - (m + 2n)
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
5 - p + v & 7 - p - 2v \\[3ex]
-1 - m + n & 6 - m - 2n
\end{bmatrix} \\[7ex]
5I \\[3ex]
= 5\begin{bmatrix}
1 & 0 \\[3ex]
0 & 1
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
5(1) & 5(0) \\[3ex]
5(0) & 5(1)
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
5 & 0 \\[3ex]
0 & 5
\end{bmatrix} \\[7ex]
2P + 3Q - MQ = 5I \\[3ex]
\begin{bmatrix}
5 - p + v & 7 - p - 2v \\[3ex]
-1 - m + n & 6 - m - 2n
\end{bmatrix}
= \begin{bmatrix}
5 & 0 \\[3ex]
0 & 5
\end{bmatrix} \\[7ex]
\implies \\[3ex]
5 - p + v = 5 \\[3ex]
-p + v = 5 - 5 \\[3ex]
-p + v = 0...eqn.(1) \\[3ex]
7 - p - 2v = 0 \\[3ex]
-p - 2v = 0 - 7 \\[3ex]
-p - 2v = -7...eqn.(2) \\[3ex]
eqn.(1) - eqn.(2) \implies \\[3ex]
(-p + v) - (-p - 2v) = 0 - (-7) \\[3ex]
-p + v + p + 2v = 7 \\[3ex]
3v = 7 \\[3ex]
v = \dfrac{7}{3} \\[5ex]
2 * eqn.(1) + eqn.(2) \implies \\[3ex]
2(-p + v) + (-p - 2v) = 2(0) + (-7) \\[3ex]
-2p + 2v - p - 2v = 0 - 7 \\[3ex]
-3p = -7 \\[3ex]
p = \dfrac{-7}{-3} \\[3ex]
p = \dfrac{7}{3} \\[5ex]
Also: \\[3ex]
-1 - m + n = 0 \\[3ex]
-m + n = 0 + 1 \\[3ex]
-m + n = 1...eqn.(3) \\[3ex]
6 - m - 2n = 5 \\[3ex]
-m - 2n = 5 - 6 \\[3ex]
-m - 2n = -1...eqn.(4) \\[3ex]
eqn.(3) - eqn.(4) \implies \\[3ex]
-m + n - (-m - 2n) = 1 - (-1) \\[3ex]
-m + n + m + 2n = 1 + 1 \\[3ex]
3n = 2 \\[3ex]
n = \dfrac{2}{3} \\[5ex]
2 * eqn.(3) + eqn.(4) \implies \\[3ex]
2(-m + n) + (-m - 2n) = 2(1) + (-1) \\[3ex]
-2m + 2n - m - 2n = 2 - 1 \\[3ex]
-3m = 1 \\[3ex]
m = -\dfrac{1}{3} \\[5ex]
\implies \\[3ex]
M =
\begin{bmatrix}
p & v \\[3ex]
m & n
\end{bmatrix}
=
\begin{bmatrix}
\dfrac{7}{3} & \dfrac{7}{3} \\[5ex]
-\dfrac{1}{3} & \dfrac{2}{3}
\end{bmatrix}
$
(2.) WASSCE:FM Given that $M:(x, y) \rightarrow (7y, 3x - y)$ and $N:(x, y) \rightarrow (2x - y, 5x + 3y)$
(a.) Write down the matrices $M$ and $N$ of the linear transformations
(b.) Find the image of $P(2, -3)$ under the linear transformation $N$ followed by $M$
(c.) Find the coordinates of the point $Q$ whose image is $Q'(2, 4)$ under the linear transformation $N$
$
(a.) \\[3ex]
Let\;\;matrices \\[3ex]
M =
\begin{bmatrix}
a & b \\[3ex]
c & d
\end{bmatrix} \;\;\;and\;\;\;
N =
\begin{bmatrix}
e & f \\[3ex]
g & h
\end{bmatrix} \\[3ex]
$
$
\underline{Transformations\;\;to\;\;Matrices} \\[3ex]
\boldsymbol{M} \\[3ex]
\begin{bmatrix}
a & b \\[3ex]
c & d
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\begin{bmatrix}
7y \\[3ex]
3x - y
\end{bmatrix} \\[3ex]
$
$
ax + by = 7y \\[3ex]
cx + dy = 3x - y \\[3ex]
\implies \\[3ex]
ax + by = 0x + 7y \\[3ex]
cx + dy = 3x - 1y \\[3ex]
\implies \\[3ex]
a = 0 \\[3ex]
b = 7 \\[3ex]
c = 3 \\[3ex]
d = -1 \\[3ex]
M =
\begin{bmatrix}
0 & 7 \\[3ex]
3 & -1
\end{bmatrix} \\[3ex]
$
$
\boldsymbol{N} \\[3ex]
\begin{bmatrix}
e & f \\[3ex]
g & h
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\begin{bmatrix}
2x - y \\[3ex]
5x + 3y
\end{bmatrix} \\[3ex]
$
$
ex + fy = 2x - y \\[3ex]
gx + hy = 5x + 3y \\[3ex]
\implies \\[3ex]
e = 2 \\[3ex]
f = -1 \\[3ex]
g = 5 \\[3ex]
h = 3 \\[3ex]
N =
\begin{bmatrix}
2 & -1 \\[3ex]
5 & 3
\end{bmatrix} \\[3ex]
$
$
(b.) \\[3ex]
P(2, -3) \\[3ex]
Linear\;\;Transformation:\;\;N\;\;followed\;\;by\;\;M \\[3ex]
Can\;\;be\;\;solved\;\;in\;\;at\;\;least\;\;2\;\;ways \\[3ex]
\underline{1st\;\;Method} \\[3ex]
N:(x, y) \rightarrow (2x - y, 5x + 3y) \\[3ex]
P(2, -3) \\[3ex]
\rightarrow (2(2) - (-3), 5(2) + 3(-3)) \\[3ex]
\rightarrow (4 + 3, 10 - 9) \\[3ex]
\rightarrow (7, 1) \\[3ex]
M:(x, y) \rightarrow (7y, 3x - y)
(7, 1) \\[3ex]
\rightarrow (7(1), 3(7) - 1) \\[3ex]
\rightarrow (7, 21 - 1) \\[3ex]
\rightarrow (7, 20) \\[3ex]
\underline{2nd\;\;Method} \\[3ex]
P(2, -3)\;\;for\;\;N\;\;followed\;\;by\;\;M = MN * P \\[3ex]
P = \begin{bmatrix}
2 \\[3ex]
-3
\end{bmatrix} \\[7ex]
MN \\[3ex]
\begin{bmatrix}
0 & 7 \\[3ex]
3 & -1
\end{bmatrix}
\begin{bmatrix}
2 & -1 \\[3ex]
5 & 3
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
0(2) + 7(5) & 0(-1) + 7(3) \\[3ex]
3(2) + -1(5) & 3(-1) + -1(3)
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
0 + 35 & 0 + 21 \\[3ex]
6 - 5 & -3 - 3
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
35 & 21 \\[3ex]
1 & -6
\end{bmatrix} \\[7ex]
MN * P \\[3ex]
= \begin{bmatrix}
35 & 21 \\[3ex]
1 & -6
\end{bmatrix} *
\begin{bmatrix}
2 \\[3ex]
-3
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
35(2) + 21(-3) \\[3ex]
1(2) + -6(-3)
\end{bmatrix} \\[7ex]
= \begin{bmatrix}
7 \\[3ex]
20
\end{bmatrix} \\[7ex]
\therefore P(2, -3)\;\;for\;\;N\;\;followed\;\;by\;\;M = (7, 20) \\[3ex]
(c.) \\[3ex]
\underline{Under\;\;the\;\;Linear\;\;Transformation\;\;N} \\[3ex]
Matrix * Point = Image \\[3ex]
Let\;\;Point\;Q = (c, d) \\[3ex]
Matrix\;N * Point\;Q = Image\;Q' \\[3ex]
\begin{bmatrix}
2 & -1 \\[3ex]
5 & 3
\end{bmatrix} *
\begin{bmatrix}
c \\[3ex]
d
\end{bmatrix} =
\begin{bmatrix}
2 \\[3ex]
4
\end{bmatrix} \\[7ex]
2c - d = 2...eqn.(1) \\[3ex]
5c + 3d = 4...eqn.(2) \\[3ex]
3 * eqn.(1) + eqn.(2) \implies \\[3ex]
3(2c - d) + (5c + 3d) = 3(2) + 4 \\[3ex]
6c - 3d + 5c + 3d = 6 + 4 \\[3ex]
11c = 10 \\[3ex]
c = \dfrac{10}{11} \\[5ex]
5 * eqn.(1) - 2 * eqn.(2) \implies \\[3ex]
5(2c - d) - 2(5c + 3d) = 5(2) - 2(4) \\[3ex]
10c - 5d - 10c - 6d = 10 - 8 \\[3ex]
-11d = 2 \\[3ex]
d = -\dfrac{2}{11} \\[5ex]
\therefore Point\;Q = \left(\dfrac{10}{11}, -\dfrac{2}{11}\right)
$
$
1116 = x - y \\[3ex]
x - y = 1116 ...new\:\: eqn.(2) \\[3ex]
\begin{bmatrix}
1 & 1 \\[3ex]
1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
4802 \\[3ex]
1116
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
4802 & 1 \\[3ex]
1116 & -1
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
1 & -1
\end{vmatrix}}
= \dfrac{-4802 - 1116}{-1 - 1}
= \dfrac{-5918}{-2} \\[5ex]
x = 2959 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & 4802 \\[3ex]
1 & 1116
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
1 & -1
\end{vmatrix}}
= \dfrac{1116 - 4802}{-1 - 1}
= \dfrac{-3686}{-2} \\[5ex]
y = 1843 \\[3ex]
$
The average apartment rent in the City of Santa Monica is $\$2959.00$
The average apartment rent in the City of San Francisco is $\$1843.00$
(5.)
$
\begin{bmatrix}
1 & -1 \\[3ex]
1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
141 \\[3ex]
183
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
141 & -1 \\[3ex]
183 & 1
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
1 & 1
\end{vmatrix}}
= \dfrac{141 + 183}{1 + 1}
= \dfrac{324}{2} \\[5ex]
x = 162 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & 141 \\[3ex]
1 & 183
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
1 & 1
\end{vmatrix}}
= \dfrac{183 - 141}{1 + 1}
= \dfrac{42}{2} \\[5ex]
y = 21 \\[3ex]
$
The speed of the plane is $162\: mph$
The speed of the wind is $21\: mph$
(6.)
Rearrange $eqns. (1.) \:\:and\:\: (2)$ to "line up"
$
x - y = -10 ...new\:\: eqn.(1) \\[3ex]
-25 = 6x - 4y \\[3ex]
6x - 4y = -25 ...new\:\: eqn.(2) \\[3ex]
\begin{bmatrix}
1 & -1 \\[3ex]
6 & -4
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
-10 \\[3ex]
-25
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
-10 & -1 \\[3ex]
-25 & -4
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
6 & -4
\end{vmatrix}}
= \dfrac{40 - 25}{-4 + 6}
= \dfrac{15}{2} \\[5ex]
x = 7.5 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & -10 \\[3ex]
6 & -25
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
6 & -4
\end{vmatrix}}
= \dfrac{-25 + 60}{-4 + 6}
= \dfrac{35}{2} \\[5ex]
y = 17.5 \\[3ex]
$
$7.5$ pounds of cashews needs to be mixed with $10$ pounds of peanuts to give $17.5$ pounds of
cashews and peanuts so that the mixture will produce the same revenue as would selling the
nuts separately.