For JAMB Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.
Solve each question using the Method of Determinants
Use at least two methods whenever applicable
Show all work
Interpret your solutions as applicable.
(1.)
$
x + y = -4 ...eqn.(1) \\[3ex]
x - y = 28 ...eqn.(2) \\[3ex]
$
$
\begin{bmatrix}
1 & 1 \\[3ex]
1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
-4 \\[3ex]
28
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
-4 & 1 \\[3ex]
28 & -1
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
1 & -1
\end{vmatrix}}
= \dfrac{4 - 28}{-1 - 1}
= \dfrac{-24}{-2} \\[5ex]
x = 12 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & -4 \\[3ex]
1 & 28
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
1 & -1
\end{vmatrix}}
= \dfrac{28 + 4}{-1 - 1}
= \dfrac{32}{-2} \\[5ex]
y = -16 \\[3ex]
$
The sum of the numbers: $12 + -16 = 12 - 16$ is $-4$
The difference between the numbers: $12 - (-16) = 12 + 16$ is $28$
(2.)
$
x + y = 54 ...eqn.(1) \\[3ex]
y = 2 + 3x ...eqn.(2) \\[3ex]
$
Rearrange $eqn.(2)$ to "line up"
$
-2 = 3x - y \\[3ex]
3x - y = -2 ...new\:\: eqn.(2) \\[3ex]
\begin{bmatrix}
1 & 1 \\[3ex]
3 & -1
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
54 \\[3ex]
-2
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
54 & 1 \\[3ex]
-2 & -1
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
3 & -1
\end{vmatrix}}
= \dfrac{-54 + 2}{-1 - 3}
= \dfrac{-52}{-4} \\[5ex]
x = 13 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & 54 \\[3ex]
3 & -2
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
3 & -1
\end{vmatrix}}
= \dfrac{-2 - 162}{-1 - 3}
= \dfrac{-164}{-4} \\[5ex]
y = 41 \\[3ex]
$
There are $13$ commercial launches
There are $41$ non-commercial launches
(3.)
$
x = 7y - 6 ...eqn.(1) \\[3ex]
x - y = 6 ...eqn.(2) \\[3ex]
$
(4.)
$
x + y = 4802 ...eqn.(1) \\[3ex]
y = x - 1116 ...eqn.(2) \\[3ex]
$
Rearrange $eqn.(2)$ to "line up"
$
1116 = x - y \\[3ex]
x - y = 1116 ...new\:\: eqn.(2) \\[3ex]
\begin{bmatrix}
1 & 1 \\[3ex]
1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
4802 \\[3ex]
1116
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
4802 & 1 \\[3ex]
1116 & -1
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
1 & -1
\end{vmatrix}}
= \dfrac{-4802 - 1116}{-1 - 1}
= \dfrac{-5918}{-2} \\[5ex]
x = 2959 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & 4802 \\[3ex]
1 & 1116
\end{vmatrix}}
{\begin{vmatrix}
1 & 1 \\[3ex]
1 & -1
\end{vmatrix}}
= \dfrac{1116 - 4802}{-1 - 1}
= \dfrac{-3686}{-2} \\[5ex]
y = 1843 \\[3ex]
$
The average apartment rent in the City of Santa Monica is $\$2959.00$
The average apartment rent in the City of San Francisco is $\$1843.00$
(5.)
$
x - y = 141 ...eqn.(1) \\[3ex]
x + y = 183 ...eqn.(2) \\[3ex]
$
$
\begin{bmatrix}
1 & -1 \\[3ex]
1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
141 \\[3ex]
183
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
141 & -1 \\[3ex]
183 & 1
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
1 & 1
\end{vmatrix}}
= \dfrac{141 + 183}{1 + 1}
= \dfrac{324}{2} \\[5ex]
x = 162 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & 141 \\[3ex]
1 & 183
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
1 & 1
\end{vmatrix}}
= \dfrac{183 - 141}{1 + 1}
= \dfrac{42}{2} \\[5ex]
y = 21 \\[3ex]
$
The speed of the plane is $162\: mph$
The speed of the wind is $21\: mph$
(6.)
$
10 + x = y ...eqn.(1) \\[3ex]
4y = 6x + 25 ...eqn.(2) \\[3ex]
$
Rearrange $eqns. (1.) \:\:and\:\: (2)$ to "line up"
$
x - y = -10 ...new\:\: eqn.(1) \\[3ex]
-25 = 6x - 4y \\[3ex]
6x - 4y = -25 ...new\:\: eqn.(2) \\[3ex]
\begin{bmatrix}
1 & -1 \\[3ex]
6 & -4
\end{bmatrix}
\begin{bmatrix}
x \\[3ex]
y
\end{bmatrix} =
\:\:\:
\begin{bmatrix}
-10 \\[3ex]
-25
\end{bmatrix} \\[3ex]
$
$
x = \dfrac{
\begin{vmatrix}
-10 & -1 \\[3ex]
-25 & -4
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
6 & -4
\end{vmatrix}}
= \dfrac{40 - 25}{-4 + 6}
= \dfrac{15}{2} \\[5ex]
x = 7.5 \\[3ex]
$
$
y = \dfrac{
\begin{vmatrix}
1 & -10 \\[3ex]
6 & -25
\end{vmatrix}}
{\begin{vmatrix}
1 & -1 \\[3ex]
6 & -4
\end{vmatrix}}
= \dfrac{-25 + 60}{-4 + 6}
= \dfrac{35}{2} \\[5ex]
y = 17.5 \\[3ex]
$
$7.5$ pounds of cashews needs to be mixed with $10$ pounds of peanuts to give $17.5$ pounds of
cashews and peanuts so that the mixture will produce the same revenue as would selling the
nuts separately.